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Figure 1: SpaceAgents-1 simulates the human and multi-robot collaboration in microgravity under the control of AI Agents. In this figure,
an astronaut is transporting cargoes across multiple modules with a free-flying robot, a rail-type robot and a dexterous robot working together.

Abstract

We present SpaceAgents-1, a system for learn-
ing human and multi-robot collaboration (HMRC)
strategies under microgravity conditions. Future
space exploration requires humans to work to-
gether with robots. However, acquiring profi-
cient robot skills and adept collaboration under mi-
crogravity conditions poses significant challenges
within ground laboratories. To address this is-
sue, we develop a microgravity simulation envi-
ronment and present three typical configurations
of intra-cabin robots. We propose a hierarchical
heterogeneous multi-agent collaboration architec-
ture: guided by foundation models, a Decision-
Making Agent serves as a task planner for human-
robot collaboration, while individual Skill-Expert
Agents manage the embodied control of robots.
This mechanism empowers the SpaceAgents-1 sys-
tem to execute a range of intricate long-horizon
HMRC tasks.

1 Introduction
We believe that human beings will eventually go into further
space and to the outer planets. In the current maintenance
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of space stations [Li et al., 2022] and future space explo-
ration [Ackerman et al., 2022], a great deal of missions need
to be carried out by both humans and robots. This makes em-
bodied collaborations between machine intelligence and hu-
man intelligence essential. However, due to the particularity
of microgravity, counterintuitive phenomena are difficult to
obtain via experiments on Earth. Therefore, highly realistic
simulation of microgravity and learning of HMRC is crucial.

In this work, we demonstrate the SpaceAgent-1 system, de-
signed to learn robot skills in microgravity, and explore the
HMRC to accomplish various tasks inside the cabin. The
system is driven by AI Agents [Durante et al., 2024]. We
designed a hierarchical multi-agent architecture to achieve
collaborative control and embodied execution. A foundation
model [OpenAI, 2023] provides the agents with multiple abil-
ities such as planning, memory, action, and critique, allowing
them to exhibit the potential to align with human skills. We
also develop a platform, SpaceSim, for microgravity physics
simulation and provide space robot simulators.

In summary, we explore a potential technical route that co-
ordinates HMRC [Lippi et al., 2022] in microgravity employ-
ing AI Agents and provide a simulation platform for verifica-
tion, presenting a new endeavor for future research.

2 SpaceSim: Microgravity Simulation
The SpaceSim platform consists of three parts: i. micrograv-
ity simulator, ii. space robots, and iii. real2sim human-robot
interaction (HRI).



Microgravity simulation. The 3D environment provides
highly realistic physical simulations of microgravity and vari-
ous phenomena it causes. The simulation engine of SpaceSim
is built on SAPIEN [Xiang et al., 2020], a part-based and
physics-rich simulation environment that allows us to train
robot skills based on reinforcement learning (RL) through the
Gym interface.

Intra-cabin space robots. SpaceSim provides three types
of robots (Figure 2). (1) Free-flying robot (F) can fly aerody-
namically inside the space station, similar to Astrobee [Bualat
et al., 2018] robot but with limited cross-cabin dragging ca-
pability. (2) Rail-type robot (R) can move along the slid-
ing rail and grasp objects with the robot arms, which is suit-
able for stable handling tasks within one module. (3) Dexter-
ous robot (D) can perform delicate operational tasks, such as
picking objects, or opening boxes.

Figure 2: Robots in SpaceSim (up) and HRI simulation (bottom).

Real2sim HRI interface. With the hand-object interac-
tion algorithm [Zhou et al., 2020], Human (H) collaborators
map real-world hand manipulations to the SpaceSim environ-
ment through visual teleoperation. Compared to using spe-
cialized equipment [Glauser et al., 2019], computer vision-
based hand-object motion capture has lower costs, enabling
large-scale data collection.

3 SpaceAgents: Hybrid and Embodied
Multi-agent Collaboration

3.1 Hierarchical Architecture
HMRC typically performs in human-supervisor and robot-
executor paradigm, or equal partnership paradigm [Xi et al.,
2023]. In contrast to both of these, we adopt a hierarchical
mode. The Decision-Making Agent (DMA) controls the col-
laboration between various Skill-Expert Agents (SEAs) and
humans, while each embodied SEA controls its correspond-
ing robot. DMA focuses on global collaborative planning,
but it is not embodied. In contrast, SEAs can accomplish em-
bodied execution, but are more focused on executing specific
skills. The advantage of this design lies in the decoupling of
policies. When a certain SEA needs to acquire new skills, the
system does not need to be updated as a whole.

3.2 Working Flow
The Agent consists of a Planner, an Actor and a Discrimina-
tor. Figure 3 sketches the working flow of the system.

Figure 3: System working flow.

Collaborative Planning. Given a long-horizon task de-
scribed in natural language, the DMA Planner first decom-
poses it into multiple subtasks and allocates each subtask
to either a SEA (preferentially) or a human executor based
on estimated affordance. To express the collaborative rela-
tionships among these subtasks, the DMA constructs a di-
rected collaboration graph (CoG, Figure 4) within its work-
ing memory. The capability for collaborative task plan-
ning originates from the foundation model [OpenAI, 2023],
which directly outputs the collaboration graph in JSON for-
mat guided by prompt engineering [Mo and Xin, 2023].
CoGs can represent both serial and parallel collaborations.
Serial collaboration refers to a sequential order between task
nodes, where a task node must wait until the preceding one
is completed. Conversely, parallel nodes allow multiple sub-
tasks to start simultaneously, with the next subtask initiating
only after all preceding subtasks have concluded.

Figure 4: Serial (a) and parallel (b) subtask collaboration graphs. (c)
A subtask is decomposed into a basic skill chain.

Subtasks are described in text instructions. For one sub-
task instruction, a Planner in the designated SEA further de-
composes it into a skill chain [Mishra et al., 2023] consisting
of basic skills (e.g., “(g)rasp”, “(o)pen”, “(p)ick”, etc.). A
basic skill is an RL policy learned via Proximal Policy Opti-
mization (PPO) [Schulman et al., 2017], which resides in the
long-term memory (skill library) of the SEA.

Task Execution. Actors transform instructions into ac-
tions. DMA Actor maintains communication between SEAs
and ensures that the security boundaries of each SEA are not
violated during execution. For each skill instruction in a skill
chain, the Actor in a SEA invokes the corresponding RL pol-
icy to output the skill action vector directly to the robot. We
utilize reward engineering to facilitate skill smoothing. The
observation and training objectives of RL include not only the
position of the termination point but also the instantaneous



state at the termination of the skill, such as the velocity, ac-
celeration, and 6-DoF pose of the manipulated object. This
ensures a smooth connection between the end of one skill and
the beginning of the next.

Result Evaluation. Given the task instruction, SEA Dis-
criminator generates a structured state description of current
observations with the help of a vision-language model [Liu
et al., 2023] and identifies whether the current state matches
the goal of the task. The Discriminator of DMA collects
messages from each SEA Discriminator in a multi-process
manner and provides the DMA Planner with judgments on
whether the tasks of each collaborator are accomplished.

With this closed workflow, planning, execution, and dis-
crimination form an agent-driven HMRC loop, navigating
collaborators to traverse the collaboration graph sequentially
and ultimately completing the task.

4 Long-horizon HMRC Manipulation
In our demo video1 , we demonstrate certain interesting phe-
nomena of weightlessness and basic skills of robots in the
simulation environment. Specifically, we demonstrate two
representative long-horizon HMRC cases.

4.1 Case 1: Floating Objects Rearrangement
In this demo (Figure 5), humans and robots work together to
collect objects floating in the space station. To simplify, Plan-
ners use the object state information provided by the simula-
tor, such as spatial position and size. DMA assigns subtasks
to humans or robots based on the distance between the float-
ing objects and the executors, thereby ensuring that there is
no mutual interference between them.

Figure 5: Floating objects rearrangement.

4.2 Case 2: Relay Object Transport
In long-horizon planning, Agents not only seek to minimize
human workload as much as possible but also comprehen-
sively consider the skill availability of different executors and
environmental constraints. The prompts provide affordance
information about the capabilities and limitations of different
robots. For example, the rail-type robot can stably grasp ob-
jects but can only move along rails within a single module.
The free-flying robot can pass through cabin connections but
struggles with stably dragging objects over long distances.
The dexterous robot can perform delicate operations but is
limited to objects fixed on the tabletop. In this case (Figure 1),

1Youtube Video (https://youtu.be/GLSjUUtp32k)

humans collaborate with multiple robots under the control of
SpaceAgents-1 to complete the task of transporting cargo be-
tween multiple modules, effectively reducing human labor.

4.3 Results
In Table 1, we compare the success rates of the same dex-
terou robot completing identical tasks under microgravity or
gravity conditions [Gu et al., 2023]. We observe that it is
more difficult for robots to complete tasks in microgravity. It
is almost impossible for robots to successfully utilize exist-
ing skill strategies directly in microgravity, which reflects the
importance of learning in a simulation environment. The suc-
cess rates of grasping skills for Free-flying robots and Rail-
type robots reach 0.84.

Robots P T CF OC CC OB PB

Dexterous (0g) 0.88 0.93 0.72 0.79 0.96 0.93 0.78
Dexterous (1g) 0.91 0.98 - 0.92 0.95 0.93 0.82

Table 1: Success rates of basic skills (PickCube, ThrowCube,
CatchFloatingCube, OpenCabinetDoor, CloseCabinetDoor,
OpenBox, PickfromBox) in microgravity (0g) or earth gravity (1g).
“-” represents the robot does not have this skill.

We also compare the performance of SpaceAgents-1 with
that of human experts (Table 2). With teleoperation, individ-
uals act as the controllers of the robot instead of the agent.
Across two collaborative tasks, SpaceAgents-1 demonstrates
human-comparable performance in long-horizon task decom-
position, attributable to the capabilities of the foundation
model. However, regarding skill execution, humans en-
counter challenges in stably controlling robots in micrograv-
ity without prior training, contrasting starkly with terrestrial
conditions. Nonetheless, a considerable number of failures
are observed in the experiment, highlighting the irreplaceabil-
ity of neither robots nor humans.

Tasks Experts SpaceAgents-1

Floating Objects Rearrangement 0.91 0.87
Relay Object Transport 0.46 0.39

Table 2: Success rates on long-horizon tasks.

5 Conclusion
This paper presents SpaceAgents-1, an HMRC system in mi-
crogravity. We design a hierarchical multi-agent collabora-
tion architecture, which is driven by the foundation model to
complete various tasks such as collaborative planning, em-
bodied execution and effect evaluation. The space physics
simulation environment we built allows the robots to learn
operational skills and collaborative processes in microgravity
at a very low cost. We will open-source this system in future
work, hoping that this effort can inspire more researchers.
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